网站首页  词典首页

请输入您要查询的字词:

 

字词 测圆海镜
类别 中英文字词句释义及详细解析
释义

测圆海镜

 《测圆海镜》原名《测圆海镜细草》,是中国古代重要数学著作,现存最早的天元术著作,宋元数学高潮的代表作之一。元李冶1248年撰。李冶去世后不久即被刊刻,今已不存。目前所存最早抄本为元明间宋景濂(宋濂之字,1310—1381)所抄,清转入丁杰手中,今藏北京图书馆。明代数学落后,数学家不能理解宋元的高深成就,顾应祥撰《测圆海镜释术》(1500)买椟还珠,删去该书中最精彩的列方程方法——天元术。清中叶李潢(?—1812)家藏一本,乾隆间由馆臣抄录,略加校勘,抄入《四库全书》。18世纪末阮元(1764—1849)由《四库全书》文澜阁本抄得一部,嘉庆二年(1797)嘱李锐将此本与丁杰藏本合校,保留了四库馆臣按,补充了新设四率及若干按语,次年由鲍廷博刻入《知不足斋丛书》,此后《白芙堂算学丛书》本、同文馆集珍本、《古今算学丛书》本、《丛书集成(初编)》本均是《知不足斋丛书》本的翻刻本或排印本。
 李冶(1192—1279),字仁卿,号敬斋,原名李治,金元数学家、文学家、历史学家,真定栾城(今河北省栾城县)人,生于大兴城(今北京市)。其父李遹,金明昌词赋科进士,是能诗善画博学多才的学者,且刚直不阿,为政清廉。李冶自幼受到良好的道德品质教养和深厚的传统文化教养。金正大七年(1230)中词赋科进士,任钧州(今河南省禹县)知事,时元与南宋联合灭金,1232年元兵破城,李冶遂微服北渡,流落忻、崞(今山西省北部)间,开始了艰苦卓绝的学术生涯。他常“饥寒不能自存”,却毫不介意,“聚书环堵”,从事数学及文史研究,完成《测圆海镜》12卷。后来到太原、平定,经济条件有所好转。1251年回到少年求学的元氏县封龙山隐居,主持封龙书院,1259年完成《益古演段》3卷。不管是流离顿挫,还是安定的隐居,他“未尝一日废其业,手不停披,口不绝诵,如是者几五十年”,成为“经为通儒,文为名家,其名德雅望又为一时衣冠之龙门”的大学者。他与元好问、张德辉交往甚密,时人誉为龙山三老。忽必烈闻李冶贤,1257年5月在开平召见了他,李冶向忽必烈表达了进君子、退小人,主张任人唯贤,反对种族偏见,减刑罚,止征伐的政治主张,这就是有名的王庭对问。1260年,忽必烈即皇帝位,次年又在燕京(今北京)召见李冶,聘为翰林学士、知制诰、同修国史,但李冶具有独立思想,且过惯了木石为居、麋鹿与游的田园生活,羞于作“翰林视草,唯天子命之,史馆秉笔,以宰相监之”的御用文人,一年后便以老病为辞还山,直至1279年去世。李冶一生著述颇丰,有《敬斋古今黈》40卷(今存宗于明刻本的12卷本及由《永乐大典》辑录的8卷本两种),表达了他对历代诗文、历史事件、人物品评、各种见闻以及修身养性等各方面的独到见解;还有《壁书丛削》12卷、《文集》40卷,已失传,《泛说》40卷,也失传,只有个别条目附于《敬斋古今黈》。李冶临终前对其子说:“吾平生著述,死后尽可燔去。独《测圆海镜》一书,虽九九小数,吾尝精思致力焉,后世必有知者,庶可布广垂永乎?”表明他最得意的还是《测圆海镜》。在自序中,他论述了事、技、道的关系,指出圣人并不排斥事、技,批评了道学家视研究科学技术和实际问题为玩物丧志的错误看法,批评了轻视数学的习俗,表示了不计悯笑、矢志研究数学的决心。他还认为,说数学难研究是可以的,说数学不能研究,是不对的;认为数学出于自然,不能以力强穷之,若“推自然之理,以明自然之数”,则什么问题都可以解决。这些看法至今仍有教益。
 《测圆海镜》12卷,170问,取“天临海镜之义”,以测圆问题为核心,以天元术为主要方法。卷1是全书的预备知识和理论基础,包括圆域图式,总率名号,今问正数,识别杂记4部分,圆域图式是全书的总图,表示了圆与15个勾股形的相互位置,用天、地、乾、坤、巽、艮、日、月、山、川、东、西、南、北、心等表示点,相当于现代数学用A、B、C、D表示点,是个创举。总率名号定义了15个勾股形:通勾股形、边勾股形、底勾股形、黄广勾股形、黄长勾股形、上高勾股形、下高勾股形、上平勾股形、下平勾股形、大差勾股形、小差勾股形、极勾股形、虚勾股形、明勾股形、勾股形及其各边。今问正数则以通勾股形的勾、股、弦320、600、680为基数,给出勾、股、弦各种关系的数值。识别杂记包括692条公式,阐明各勾股形边长之间的关系及其与圆径的关系,分别归于诸杂名目、五和五较、诸弦、大小差、诸差、诸率互见、四位相套及拾遗八项,这些公式经过证明,除8条外都是正确的,是为集前此中国学者关于圆与勾股形关系知识之大成。全书的其他公式、各类问题的解法均可由这些公式推出,其中诸杂名目包括了若干基本公式,尤以最后10个圆径公式最为重要,是识别杂记乃至全书的纲。测圆问题源于《九章算术》勾股容圆问,到宋元时期,发展为一项重要的专题研究,洞渊九容就是李冶之前关于这一课题的成果,九容是关于勾上容圆、股上容圆、弦上容圆、勾股上容圆、勾外容圆、股外容圆、弦外容圆、勾外容圆半、股外容圆半9种情况下圆径与勾股形三边的关系公式(也有人认为包括勾股容圆而无弦上容圆)。本书便是在洞渊九容基础上演绎出来的,其卷2便介绍了以上10种容圆的圆径公式。卷3-10,依次依边股、底勾、大股、大勾、明前、明后、大斜、大和、三事和配各事形成了不同的题目。卷11是综合题目,卷12为“之分”。自卷2-12凡170问都是求圆径问题,且答案亦同。各题分题目、答、法、草4部分。法列出解法,主要是开方式即一元方程,草则说明解法的推导过程,主要用天元术。
 天元术是本书解题的主要方法,也是本书现在备受重视的原因所在。所谓天元术就是设未知数列方程的方法:先设某为天元一(相当于现今设某为未知数x),然后根据问题的条件,列出两个等价的天元式即多项式,将此两天元式如积相消,便得到一个开方式即今之一元二次或高次方程。这实际上是一种半符号代数学。从本书可以看出,李冶已熟练地掌握了多项式的加、减、乘、除(只限于除数为单项式)。天元式的表示法是在未知数右侧记一“元”字,或在常数项旁记一“太”字,未知数的其他幂次则分列于“元”或“太”之上下,依位置定其幂次。天元术产生于何时,书简有缺,难以详考,其记法也有一个发展过程。据李冶说,最初人们用人表示常数项,人之上“天、……仙”9个字表示未知数的正幂,人之下“地、……鬼”9个字表示其负幂。李冶时代有古法图式:以太代替人表示常数项,省去天、地之外的各字,以天元在上表示正幂,地元在下表示负幂,又有今法图式:天元在下表示正幂,地元在上表示负幂。李冶处于天元式记法简化及由古法向今法过渡的阶段。他在本书中用古法,但取消表示负幂的地元,确定了元或太之后,其余幂次皆由其与元(或太)的相对位置决定。如1、2元3、4便表示x2+2x+3+4x-1,这是李冶的贡献。后来在《益古演段》中他又改用今法,即高次幂在下。
 对本书的开方法李治没明确说明。数学史界公认是用增乘开方法。他的开方式的系数可正、可负,可以是小数,也可以是分数,且没有常数项水远为负的限制。本书在开方中也处理了常数项变号与绝对值增大的情况,分别称为翻法(或倒积)与益积,前者相当于秦九韶的“换骨”,后者相当于“投胎”。本书中十进小数的概念,也十分明确,也以名数单位起小数点的作用。

古词语“测圆海镜”的出处、文献和意思 - 可可诗词网

测圆海镜

 老大以来,得洞渊九容之说,日夕玩绎,而向之病我者,使爆然落去而无遗馀。山中多暇,客有从余求其说者,于是乎又为衍之,遂累一百七十问。既成编,客复目之《测圆海镜》,盖取夫天临海镜之义也。
 

元·李冶《测圆海镜序》


 【评】此为李冶自述著《测圆海镜》之缘起。
 《测圆海镜》十二卷,元李冶撰。冶字敬斋,栾城人,金末登进士,入元,官翰林学士,事迹见《元史》本传。其书以勾股容圆为题,自圆心、圆外纵横取之,得大小十五形,皆无奇零。次列“识别杂记”数百条,以穷其理。次设问一百七十则,以尽其用。探赜索隐,叁伍错综,虽习其法者,不能骤解。而其草则多言“立天元一。”按:立天元一法见于宋秦九韶《九章》大衍数中。厥后授时草及《四元玉鉴》等书皆屡见之。而此书言之独详,其关乎数学者甚大。然自元以来,畴人皆株守立成,习而不察,至明遂无知其法者。故唐顺之与顾应祥书谓立天元一漫不省为何语。顾应祥演是书,为分类释术,其自序亦云;立天元一无下手之术。则是书虽存而其传已泯矣。
 

清《四库全书·测圆海镜提要》


 《测圆海镜》何为而作也?所以发挥立天元一之术也。算数之书,《九章》尚已。“少广”著开方之法,“方程”别正负之用。立天元一者,融会少广、方程而加精焉者也。……洎乎明代,算学衰歇,顾箬溪应祥作《测圆海镜分类释术》、《测圆算术》等书,以立天元一无下手之处,每章辄删去细草,而但演开带从诸乘方法,舍其本而求其末,不知妄作之罪,应祥实无可辞焉。国朝梅文穆公肄业蒙养斋,亲受圣祖仁皇帝指示算法,始悟西人所译借根方,即古立天元一之术,流入彼中者,于所著《赤水遗珍》中,论之甚悉。于是立天元术,又得彰明。……试以是书所列一百七十问反复研究,考之于二千年以来相传之《五曹》、《孙子》诸经,盖无以逾其精深。又证之以数万里而外译撰之《同文算指》诸编,实不足拟其神妙,而后知立天元者,自古算家之秘术,而《海镜》者,中土数学之宝书也。
 

《测圆海镜》清·阮元序


 【评】以上二条概述了《测圆海镜》的成就以及明代顾应祥等舍本求末,删去天元术之妄作。
 [李善兰]及得读此书,然后知算学之精深,遂好之至今,后译西国代数、徽分、积分诸书,信笔直书,了无疑义者,此书之力焉。盖诸西法之理,即立天元一之理也。今来同文馆,即以此书课诸生,令以代数演之,则合中西为一法矣。
 

《测圆海镜》清·李善兰序


 【评】李善兰以自己翻译西方数学的实践高度评价了《测圆海镜》的意义。
测圆海镜

210 测圆海镜

现存最早的系统阐述天元术的数学著作。系李冶运用天元术对勾股容圆问题所作系统研究和阐发的成果。为其生平之得意杰作。1248年成书,12卷。收勾股容圆问题170个,皆为根据勾股形中各线段求其内切圆、旁切圆直径的问题。他将勾股形分成14个小勾股形,得到692条“识别杂记”(是勾股形各边及其和、差、积间的互求公式)和9种容圆的公式。与在代数中引入天元作为未知数的符号一样,在几何图形的表示法方面他突破传统方法,开辟新径。在各勾股形顶点处加标汉字,用以标记各勾股形。这是半符号数学的前身。该书在内容上和方法上对传统数学都有较大扩充和发展。清代学者对该书给以高度评价。赞为“中土数学之宝书”(阮元)。

☚ 缉古算经   益古演段 ☛

测圆海镜

中国元朝李冶著(1248)。论述170个用天元术解直角三角形的容圆问题。是中国现存最早的系统论述天元术的著作。

测圆海镜

十二卷。元李冶 (1192—1279)撰。李冶,原名李治,字仁卿,号敬斋,真定栾城 (今河北栾城县)人。李遹次子。少时于元氏 (今河北元氏县)求学。金正大七年 (1230)词赋进士,任钧州 (今河南禹县)知事。钧州为蒙古军所破后他微服北渡,隐居于崞山桐川 (今山西崞县),于1248年著《测圆海镜》十二卷。1251年回元氏封龙山隐居讲学,1261年李冶以老病辞忽必烈诏聘,1256年被召为翰林学士,一年后辞官回封龙山。著有 《益古演段》三卷、《泛说》四十卷、《文集》四十卷、《壁书丛削》十二卷 (后三种已失传)。《测圆海镜》十二卷共一百七十问,所讨论的问题均为已知直角三角形三边上各个线段而求其内切圆、傍切圆直径之类的问题,其章目为卷一 “总率名号”、“识别杂记”六百九二条; 卷二 “正率”十四问; 卷三“边股”十 七问;卷四“底勾”十 七问;卷五“大股”十八问; 卷六 “大勾” 十八问; 卷七 “明”前十八问;卷八 “明”后十六问;卷九“大斜”四问,“大和”八问;卷十 “三事和”八问;卷十一 “杂糅”十八问;卷十二“之分”十四问。李冶自序云:“余自幼喜算术,恒病夫考圆之术,例出于牵强,殊乖于自然,……老大以来,得洞渊九容之说,日夕玩绎,而响之病我者,使爆然落去,而无遗余。山中多暇,客有从余求其说者,于是乎又为衍之,遂累一百七十问”。显见该书衍“洞渊九容”之说而成。“洞渊”为何已不可考。《测圆海镜》卷一之首列“圆城图式”一张,该图分勾股形天地乾为十四个相似的勾股形,除两个相等之外,与原勾股合为十三率,并给出了各勾股形的名称。李冶于卷二之首写道:“假令有圆城一所,不知周径,四面开门,门外纵横各有十字大道,其西北十字道头定为乾地;其东北十字道头定为艮地;其东南十字道头定为巽地;其西南十字道头定为坤地;所有测望杂法,一一设问如后。”这是全书 一百七十问的总图,凡建立天元式所用定理均可在此图得到几何解释。为了叙述图式中复杂的几何关系,李冶先立名号,即给出了定义,如 “内率,明勾股相得”,“次差,明二差共”等等。然后列出了图中各线段之间以及各线段的和、差、乘积等等之间相互关系六百九十二条,内分:诸杂名目、五和五较、诸弦、大小差、诸差、诸率互见、四位相套等七个项目,各项目内容深浅不一,在演算过程中作用亦有差别。其中每一条都相当于一个几何定理,例如“诸杂名目”中最后十条是全书的基本公式,多数题目演算与之有关。李冶汇总这些条文列全书之首,名曰 “识别杂记”,后人对此多有研究,清李锐认为:“杂记数百条,乃是全书之纲领,非此不能立算”。而当代中算史家梅荣照则认为这是“作者在研究 ‘洞渊九容’与演算《测圆海镜》的题目过程中,随时记录所应用的结论,后稍经整理而成的”。(《宋元数学史论文集》)不应过分夸大其作用。经后人校算证明,这六百九十二条“杂记”误谬者仅八条。在卷二第一一十题作者给出十种容圆,亦即求三角形天乾地的内切圆直径的十个公式:勾股容圆(内切于大勾股形)、勾上容圆(圆心在勾上且切于弦和股)、股上容圆(圆心在股上且切于弦和勾)、弦上容圆(圆心在弦上且切于勾和股)、勾股上容圆(圆心在勾股交点且切于弦)、勾外容圆(切于勾与弦、股的延长线)、股外容圆 (切于股与弦、勾的延长线)、弦外容圆 (切于弦与勾、股的延长线)、勾外容圆半(心在股的延长线且切于勾、弦的延长线)、股外容圆半(心在勾的延长线且切于股、弦的延长线)。上述十种除勾股容圆已见于《九章》,余者称“洞渊九容之术”,是为全书的基础。《测圆海镜》的主要价值,即李冶的主要目的是利用天元术来列出方程。在金元时期河北、山西一带已产生天元术,尚不完善,其表示法及天元式造法、运算尚不统一。李冶在此书中对天元术进行了总结和发展。在天元式表示法上,他取消了用地元表示负数次幂,只用一个天元,并采用“天在太上”的排列顺序(后在《益古演段》中他又将其颠倒过来)。对于天元式的加减乘除运算,李冶给出了完整的方法;在造天元式时,他灵活选择天元一所表示的数,以便简化演算过程,并采用求出半径幂的天元多项式方法,比较简便易行。李冶对自己的工作十分自信:“测圆海镜一书,虽九九小数,吾常精思致力焉,后世必有知者。”从明到清天元术几经失传,直至梅珏成悟得西洋借根方即立天元一时,天元术方又得光大。《测圆海镜》是为金元天元术的代表作流传至今,在此基础上发展到四元术构成了我国独步天下的代数学,可知该书在世界数学史上地位。明清以来,为该书释术演草作图者甚众,主要著作有:明顾应祥《测圆海镜释术》十卷 (1550),《测圆算术》 四卷(1553); 1797年清李锐校订后刻入《知不足斋丛书》;李善兰《测圆海镜图表》一卷、《测圆海镜解》一卷;张楚钟《测圆海镜识别详解》一卷 (1873);李镠《测圆海镜法笔》 二卷 (1879); 王鉴 《海镜窥豹》 一卷(1894); 刘岳云《测圆海镜通释》四卷 (1896);王泽沛《测圆海镜细草通释》十二卷 (1898); 叶耀光《测圆海镜图解》二卷(1898);杨兆鋆《九容演代》一卷(1898)。当代中算史家较有影响的成果有:李俨《测圆海镜研究历程考》(载《中算史论丛》第四集);梅荣照《李冶及其数学著作》(载《宋元数学史论文集》)。《测圆海镜》主要版本有:《四库》本;1876年同文馆集珍版本; 《古今算学丛书》本。

随便看

 

文网收录3541549条中英文词条,其功能与新华字典、现代汉语词典、牛津高阶英汉词典等各类中英文词典类似,基本涵盖了全部常用中英文字词句的读音、释义及用法,是语言学习和写作的有利工具。

 

Copyright © 2004-2024 Ctoth.com All Rights Reserved
京ICP备2021023879号 更新时间:2025/8/15 12:18:38