欧拉图oula tu
无孤立点并且存在一条回路,经过G的每条边一次且只经过一次的图。称这条回路为欧拉回路.称经过G的每条边一次且仅一次的一条路为欧拉路.
多边形图Cn(n≥3)是欧拉图.
1736年欧拉在论文“哥尼斯堡的七座桥”中,得到了关于欧拉图的判别条件:
❶连通图G是欧拉图,当且仅当G的每个点均为偶点(即度数均为偶数).
❷连通图G仅有欧拉路而没有欧拉回路,当且仅当G恰有两个点是奇点(即度数是奇数).
若G满足欧拉图的条件❶,则可以从G的任何点出发,经过每边一次且仅一次,能够回到出发点.若满足条件
❷时,则从一个奇点出发,经过每边一次且仅一次,能够到达另一奇点.