圆锥投影yuanzhui touying
以圆锥面作为投影面,使圆锥面与地球面相切或相割,将地球面上的经纬线投影到圆锥面上,然后把圆锥面沿一条母线剪开展为平面而成。由于圆锥面与地球面相切或相割的位置不同,有正轴圆锥投影、横轴圆锥投影和斜轴圆锥投影。正轴圆锥投影是在投影时使圆锥的轴与地轴重合。投影后的经纬线形状比较简单,称为标准网。纬线为以圆锥顶点为圆心的同心圆弧,经线为由圆锥顶点向外放射的直线束,经线间的夹角小于相应的经度差。设地球面上两条经线的夹角为λ,投影在平面上为δ,则δ=cλ(c—圆锥常数)。纬线半径ρ随纬度而变化,即ρ是纬度
的函数,一般用ρ=f(
)式表达。故正轴圆锥投影的一般公式为:
ρ=f(
)
δ=cλ
圆锥常数c与圆锥的切、割位置等条件有关。对于不同的圆锥投影,它是不同的。但对于某一个具体的圆锥投影,C值是固定的。总的说来,C值小于1,大于0,即0
由于ρ的函数形式不同,圆锥投影有等角圆锥投影、等积圆锥投影和任意(包括等距)圆锥投影,每一种中都有切圆锥投影和割圆锥投影。不论哪一种圆锥投影变形分布规律都是相同的。凡是切圆锥投影,相切的纬线是一条没有变形的线,称为标准纬线。从标准纬线向南、向北变形逐渐增大。凡是割圆锥投影,相割的两条纬线没有变形,是两条标准纬线。离开标准纬线愈远,变形愈大。等变形线与纬线平行,呈同心圆弧状分布。
圆锥投影适合于绘制中纬度沿东西方向延伸地区的地图。由于地球上广大陆地位于中纬度地区,圆锥投影经纬线形状又比较简单,所以它被广泛应用于编制各种比例尺地图。