网站首页  词典首页

请输入您要查询的字词:

 

字词 游程检验
类别 中英文字词句释义及详细解析
释义
游程检验

游程检验

依时间或其他顺序排列的有序数列中,具有相同的事件或符号的连续部分称为一个游程。在一个游程中的事件或符号的个数称为该游程的长度。例如在以下的两个符号序列中,
(1) ++++------
(2) --+-+++--+若以r表示游程的个数,l表示某游程的长度,则序列(1)的r=2,l依次为4和6;序列(2)的r=6,l依次为2,1,1,3,2,1。设样本序列中,所有观察值只能分为互不相容的两类事件,一类观察值的个数为n1,另一类为n2,n1+n2=n。游程检验包括游程个数检验和游程长度检验。二者均可用于检验序列中两类事件发生过程的随机性,游程个数检验还可用于两样本的比较。
序列的随机性检验 目的是推断序列中两类事件的发生过程是否随机的。有游程个数检验与游程长度检验两种方法。
游程个数检验 它是根据样本序列中,n1、n2与r值的大小来推断两类事件的发生过程是否随机的。检验假设H0为两类事件的发生是随机的,备择假设H1为两类事件的发生不是随机的。基本思想是: 若由H0 的总体作随机抽样,当n1与n2一定时,r值不会太大也不会太小;若r值太大或太小,将怀疑此样本不是来自H0的总体。当求得r值后,可从游程检验用r界值表(表1)查得由H0中抽得此r的概率P。对于给定的检验水准α,若r≤“rα的下界”或r≥“rα的上界”,则P≤α,于是按α水准拒绝H0,接受H1;若“rα的下界”α,于是不拒绝H0。
当n1或n2超出表1范围时,可用式(1)将游程个数检验变换为u检验,然后查u界值表得P值,按所取检验水准作出推断结论。

分式的分母为r的标准误。
此外,有些序列的观察值是用数值的大小表示的,可以通过中位数法将其变换为两类事件,然后按游程个数检验推断其随机性。如例2为某病病死率的动态数列,可先求得其中位数M,再将各观察值之大于M者标以“+”号,小于M者标以“-”号,等于M者弃去不计;最后按符号序列求得游程个数r,查表1得P值,按所取检验水准作出推断结论。
例1 某村发生某种地方病。住户沿一条溪水排列,调查结果对9家病户标以“+”号,17家非病户标以“-”号。问病户分布是否随机的?


H0: 病户排列是随机的,
H1: 病户排列非随机的。
α=0.05。
计得r=14,今n1=9,n2=17,查表1得P>0.05,按α=0.05水准不拒绝H0,故可以认为此病的病户分布很可能是随机的,尚看不出有聚集性。


表1 游程个数检验用r界值表
上行: P(1)=0.05,下行: P(2)=0.05,n1≤n2

n1n2
567891011121314151617181920
53~9
2~10
3~10
3~10
3~10
3~11
3~11
3~11
4~11
3
4~11
3
4
4
4
4
4
4
5
4
5
4
5
4
5
4
5
5
5
5
5
5
6 3~11
3~11
4~11
3~12
4~12
3~12
4~12
4~13
5~12
4~13
5~13
4~13
5~13
4~13
5~13
5
5~13
5
6
5
6
5
6
5
6
5
6
6
6
6
7  4~12
3~13
4~13
4~13
5~13
4~14
5~13
5~14
5~14
5~14
6~14
5~14
6~14
5~15
6~14
5~15
6~15
6~15
6~15
6
7~15
6
7~15
6
7~15
6
7
6
8   5~13
4~14
5~14
5~14
6~14
5~15
6~15
5~15
6~15
6~16
6~15
6~16
7~16
6~16
7~16
6~16
7~16
6~17
7~16
7~17
8~16
7~17
8~16
7~17
8~17
7~17
9    6~14
5~15
6~15
5~16
6~15
6~16
7~16
6~16
7~16
6~17
7~17
7~17
8~17
7~18
8~17
7~18
8~17
7~18
8~18
8~18
8~18
8~18
9~18
8~18
10     6~16
6~16
7~16
6~17
7~17
7~17
8~17
7~18
8~17
7~18
8~18
7~18
8~18
8~19
9~18
8~19
9~19
8~19
9~19
8~20
9~19
9~20
11      7~17
7~17
8~17
7~18
8~18
7~19
8~18
8~19
9~19
8~19
9~19
8~20
9~19
9~20
10~20
9~20
10~20
9~21
10~20
9~21
12       8~18
7~19
9~18
8~19
9~19
8~20
9~19
8~20
10~20
9~21
10~20
9~21
10~21
9~21
10~21
10~22
11~21
10~22
13        9~19
8~20
9~20
9~20
10~20
9~21
10~21
9~21
10~21
10~22
11~21
10~22
11~22
10~23
11~22
10~23
14         10~20
9~21
10~21
9~22
11~21
10~22
11~22
10~23
11~22
10~23
12~22
11~23
12~23
11~24
15          11~21
10~22
11~22
10~23
11~22
11~23
12~23
11~24
12~23
11~24
12~24
12~25
16           11~23
11~23
12~23
11~24
12~24
11~25
13~24
12~25
13~25
12~25
17            12~24
11~25
13~24
12~25
13~25
12~26
13~25
13~26
18             13~25
12~26
14~25
13~26
14~26
13~27
19              14~26
13~27
14~27
13~27
20               15~27
14~28

摘自 山内二郎: 统计数值表,298,JSA-1972
例2 某病病死率逐年排列如下,此20年间病死率的变化是否随机的?


H0: 逐年病死率变化是随机的,
H1: 病死率的变化不是随机的。
a=0.05。
求中位数:

M的病死率有10个,均标以“+”号。计游程个数: r=6。今n1=10,n2=10,查表1得P<0.05,按a=0.05水准拒绝H0,接受H1,故可认为此病病死率在1951~1970年间的变化不是随机的,出现了几个持续的过程。1954~1957年和1959~1962年病死率持续较高,而1963~1970年则持续较低。
游程长度检验 它是根据样本含量n及序列中最长游程的长度l来推断两类事件的发生过程是否随机的。检验假设H0为两类事件的发生是随机的,备择假设H1为两类事件的发生不是随机而是有升降倾向的。基本思想是: 由H0的总体作随机抽样,当n一定时,l值不会太大,若太大将怀疑此样本不是来自H0的总体。当求得l值后,可从游程长度检验用l界值表(表2为简表,仅列出大于或等于界值时相应的P值)查得P值,再按所取检验水准作出推断结论。
有些序列的观察值是用数值大小表示的,如例2,可以先变换为符号序列,再进行游程长度检验。变换的方法是: 确定序列中相邻两观察值之差的符号。若后者大于前者记“+”号,反之记“-”号,相邻两值相等时,删去其一,使序列中没有相邻的等值。样本含量n亦相应减少。

表2 游程长度检验用l界值简表(单侧)

nP<0.05P<0.01
54 
6~7
8~9
10~26
27~34
35~100
4
5
5
6
6
5
5
6
6
7

摘自 山内二郎:統計数值表,304,JSA-1972
例3 用游程长度检验例2的随机性。
H0: 同例2,
H1: 病死率的变化不是随机而是有下降倾向的。
单侧α=0.05。
根据逐年病死率的变化(计相邻两年病死率之差的符号),得下列符号序列:
+ - + + - - - + - + - - + - - - - - +此序列有19个符号,n=20,最长游程的长度l=5,查表2得P<0.05。按α=0.05水准拒绝H0,接受H1。1964~1969年间游程长度最长,且符号为“-”,可认为此阶段病死率有下降趋向。
两样本的比较 本法把游程个数检验用于两样本的比较,目的是推断两样本分别代表的两总体分布是否相同。如果结论是分布不同,本法还不能肯定是位置不同、变异度不同还是偏度不同。
方法步骤: 将两样本的观察值混合由小到大排列,并在各观察值下注明其所属样本,比如属第一样本者记以X,属第二样本者记以Y。计算序列中的游程数r,查表1得P值,或按式(1)计算u值,再查u界值表得P值,按所取检验水准作出推断结论。
若两样本中有一个或几个观察值相等,计算r的方法是将相等观察值下的X与Y作两种排列: 一种是使游程数最小,记作r′;另一种是使游程数最大,记作r″。r=(r′+r″) /2。若相等观察值只在同一样本内时,并不影响r值。例如序列“10 14 14 14 16”中,10属于X,16属于Y,其中3个14,有2个属于Y,1个属于X 。于是最小游程数的排列法为XXYYY,r′=2;最大游程数的排列法为XYXYY,r″=4,故r=(2+4)/2=3。
例4 两类胃癌(高分化腺癌与未分化癌)各10例,术后生存月数如下。问两组间有无差别?
高分化腺癌(X): 10,14,19,36,47,53,56,94,141,169
未分化癌(Y): 6,6,7,9,14,14,16,25,37,46
H0: 两总体分布相同,
H1: 两总体分布不同。
α=0.05。
将两组数据统一由小到大排列(相同数据14的X、Y作两种排列,上行的r值最小,下行最大):

6,6,7,9,10,14,14,14,16,19,25,36,37,46,47,53,56,94,141,169
YYYYXX
Y
Y
X
Y
Y
YXYXYYXXXXXX

由以上序列可得r′=8,r〃=10。于是得r=(8+10)/2=9。查r界值表,当n1=n2=10时,P>0.05,按α=0.05水准不拒绝H0,故不能认为两类胃癌生存期的分布不同。

☚ 配伍组资料的秩和检验   升降趋势检验 ☛
00013250
随便看

 

文网收录3541549条中英文词条,其功能与新华字典、现代汉语词典、牛津高阶英汉词典等各类中英文词典类似,基本涵盖了全部常用中英文字词句的读音、释义及用法,是语言学习和写作的有利工具。

 

Copyright © 2004-2024 Ctoth.com All Rights Reserved
京ICP备2021023879号 更新时间:2025/8/16 4:53:40