字词 | 资金时间因素的计算方法 |
类别 | 中英文字词句释义及详细解析 |
释义 | 资金时间因素的计算方法 1.单利法 这是仅以本金为基数计算利息的方法。虽然考虑了资金的时间因素,但对以前已经产生的利息,并不转化为本金而累计计息。故对技术经济分析而言,不是完善的方法。其计算如式2-46所示。 F=P(1+ni) (2-46) 式中 F——本利和,或未来值; P——本金,或现值; i——利率; n——利息周期(通常为年)数; Pni——期末利息。 2.复利法 这是以本金与累计利息为基数的计息方法。即通常说的利上加利的计息法。此法能充分地反映资金的时间因素,是技术经济分析中常用的方法,也是我国现行信贷制度正在推行的方法。 复利法又分为普遍复利和连续复利两大类方法。每一类又依据支付利息的方式不同,有不同的计算公式。 (1)普通复利计算公式。是指以年复利计息,按年进行支付的复利计算公式。根据支付方式和等值换算时点的不同,普通复利公式又分为:一次支付未来值;一次支付现值;等额支付序列未来值;等额支付序列偿债基金;等额支付序列资金回收;等额支付序列现值;等差序列式或几何序列等不同的计息公式。这些公式及应用举例见表2-19。 表2-19 普通复利公式及应用举例 表2-19中的公式符号,除与单利法中的相同符号外,还有 A——等额年金序列; G——等差变额; j——逐年递增(减)的固定百分数。 表中的“举例”栏内,都是具体的现金流量时间图。图中: (2)连续复利计算公式。是指以小于一年为周期的复利计息,按半年或季或月或周或天进行支付的复利计算公式,这种计息方法更接近于实际,在理论上也较为完善。一些高级工程的技术经济分析,常采用连续复利法。此法又分为:连续复利计息、按年间断支付和连续复利计息、均匀连续支付等不同计算公式。其公式及应用举例见表2-20。 表2-20 连续复利(间断支付)公式及其应用举例 由于计息周期小于一年,则实际年利率要大于原规定的年利率。这样,原定的年利率称为名义利率(以r表示)。而实际利率(i)是按周期计息,并将利息的时间因素也考虑进去后的正年利率。 实际利率与名义利率的换算关系,见式2-47和式2-48。 表2-20中的符号,除与前面相同的外,还有: e——为自然对数的底(=2.718); r——名义利率(原定利率); c——资金递增(减)率。 式2-47是普通复利的实际利率与名义利率的关系式。式中的m为实际计息周期次数。式2-48是连续复利的实际利率与名义利率的关系。 |
随便看 |
|
文网收录3541549条中英文词条,其功能与新华字典、现代汉语词典、牛津高阶英汉词典等各类中英文词典类似,基本涵盖了全部常用中英文字词句的读音、释义及用法,是语言学习和写作的有利工具。