释义 |
识别问题identification problem在解联立方程组时,并不总是可以用简化方程参数得到原结构方程参数,有时可能会得到多个结构方程系数,有时则可能一个也得不到。这就是联立方程组的识别问题。如果能够从简约方程得到结构方程参数的惟一解,那这个方程就是完全识别; 如果得到多个结构方程参数的估计量,则称为过度识别。识别是针对某个方程,而不是针对整个方程组而言的。对于识别的判断有一个必要条件,称为识别的阶的条件,这个条件规则如下: (1) k=g-1方程完全可识别。(2) k>g-1方程过度可识别。(3) kq=a1+b1p+c2y+d2R+∑1 ……❶ 和供给函数:
q=a2+b2p+∑2……… ❷ 就方程 ❷而言,内生变量为q和p,g>2。而方程 ❷以外的方程中没有出现方程❶中含有的变量为y,k,故k=2。因此k>g-1,方程 ❷将过度识别。对方程❶做类似分析,可知方程❶不可识别。注意,该规则仅是方程识别的必要条件。 |