服务点的最优区位法
在众多经济点已知的情况下,如何选出集中经济点的最优位置,常采用非线性极值法,在计算机上求解。 若设某油田有P1,P2,…Pn个居民点,今欲规划一个行政中心或服务中心,为各居民点服务。各居民点人口数分别为q1,q2,…,qn。问该中心区应位于何处,能使未来联系服务最为方便,即总的人公里数最小。 设M点为理想的中心位置,r1,r2,…rn(公里)为各居民点到达该中心的距离。 于是,总的人公里数为:  再以(xi,yi)表示pi居民点的坐标,中心点的坐标为M(x,y),则各居民点到达中心的距离为  解上述方程组,求得x,y,即为众居民点的中心位置M(x,y)。 在经济地理学研究中,中心位置对区域经济特征、城镇及工业、商业的分布都有深刻的影响,因此,许多经济地理学者致力于中心位置及其机制的研究。 |