正态曲线拟合
计量资料若频数分布近于正态分布,可拟合正态曲线以估计其总体分布。此法常用于重复测定误差的估计和正常值范围的估计。正态曲线拟合的方法步骤如下:
(1)计算均数X和校正标准差sc。分别按式(1)、(2)。

式中f为各组段的频数,i为组距,X
0为假定均数,x=(组中值-X
0)/i,n为样本含量,1/12为归组校正数,或称Sheppard校正数。用频数表计算标准差时,以组中值代替本组段各观察值,而组中值两侧的频数并非对称分布,而是离均数近的一侧稍多,这样算得的标准差往往略微夸大了实际的变异度。采用校正数就是为了消除此夸大的部分,使拟合的正态曲线更接近实际的频数分布。若不用频数表而直接按原观察值计算标准差,则无须校正。
(2)计算标准正态离差u。按式(3)。

式中X为各组段上、下限。如表2资料X=14.18,sc=1.21,第一个组段的下限为10.0,因此,u=|10-14.18|/1.21=3.45,余类推,如表2第(4)栏。在X所在组段,还应写出X=X时,u=0.00。
(3) 求z。由表1查出与u对应的标准正态曲线的纵坐标z,如表2第(5)栏。
(4)计算与原资料频数分布各组段上、下限相应的正态曲线之纵坐标Y。按式(4)。

式中sc/i为以组距为单位的校正标准差。如表2资料n=110,i=0.5,sc=1.21,则

常数。因此,表2第(5)栏乘以45.4545即得Y,如表2第(6)栏。比如z=0.001时,Y=0.001(45.4545)=0.05;又u=0.00,z=0.399时,Y=0.399(45.4545)=18.14,即拟合的正态曲线上,X=时的纵坐标, 也就是曲线的顶点。
表1 标准正态曲线的纵坐标z
u | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 |
.0 | .399 | .399 | .399 | .399 | .399 | .398 | .398 | .398 | .398 | .397 |
.1 .2 .3 .4 .5 | .397 .391 .381 .368 .352 | .397 .390 .380 .367 .350 | .396 .389 .379 .365 .348 | .396 .389 .378 .364 .347 | .395 .388 .377 .362 .345 | .394 .387 .375 .361 .343 | .394 .386 .374 .359 .341 | .393 .385 .373 .357 .339 | .393 .384 .371 .356 .337 | .392 .383 .370 .354 .335 |
.6 .7 .8 .9 1.0 | .333 .312 .290 .266 .242 | .331 .310 .287 .264 .240 | .329 .308 .285 .261 .237 | .327 .306 .283 .259 .235 | .325 .303 .280 .256 .232 | .323 .301 .278 .254 .230 | .321 .299 .276 .252 .227 | .319 .297 .273 .249 .225 | .317 .294 .271 .247 .223 | .314 .292 .268 .244 .220 |
1.1 1.2 1.3 1.4 1.5 | .218 .194 .171 .150 .130 | .215 .192 .169 .148 .128 | .213 .190 .167 .146 .126 | .211 .187 .165 .144 .124 | .208 .185 .163 .141 .122 | .206 .183 .160 .139 .120 | .204 .180 .158 .137 .118 | .201 .178 .156 .135 .116 | .199 .176 .154 .133 .115 | .197 .174 .152 .131 .113 |
1.6 1.7 1.8 1.9 2.0 | .111 .094 .079 .066 .054 | .109 .092 .078 .064 .053 | .107 .091 .076 .063 .052 | .106 .089 .075 .062 .051 | .104 .088 .073 .061 .050 | .102 .086 .072 .060 .049 | .101 .085 .071 .058 .048 | .099 .083 .069 .057 .047 | .097 .082 .068 .056 .046 | .096 .080 067 .055 .045 |
2.1 2.2 2.3 2.4 2.5 | .044 .035 .028 .022 .018 | .043 .035 .028 .022 .017 | .042 .034 .027 .021 .017 | .041 .033 .026 .021 .016 | .040 .032 .026 .020 .016 | .040 .032 .025 .020 .015 | .039 .031 .025 .019 .015 | .038 .030 .024 .019 .015 | .037 .030 .023 .018 .014 | .036 .029 .023 .018 .014 |
2.6 2.7 2.8 2.9 3.0 | .014 .010 .008 .006 .004 | .013 .010 .008 .006 .004 | .013 .010 .007 .006 .004 | .013 .010 .007 .005 .004 | .012 .009 .007 .005 .004 | .012 .009 .007 .005 .004 | .012 .009 .007 .005 .004 | .011 .009 .006 .005 .004 | .011 .008 .006 .005 .003 | .011 .008 .006 .005 .003 |
3.1 3.2 3.3 3.4 3.5 | .003 .002 .002 .001 .001 | .003 .002 .002 .001 .001 | .003 .002 .002 .001 .001 | .003 .002 .002 .001 .001 | .003 .002 .002 .001 .001 | .003 .002 .001 .001 .001 | .003 .002 .001 .001 .001 | .003 .002 .001 .001 .001 | .003 .002 .001 .001 .001 | .002 .002 .001 .001 .001 |
3.6 | .001 | .001 | .001 | .001 | .001 | .001 | .000 | 000 | .000 | .000 |
本表按条目“正态分布”式(4)算得。
(5)作图。 以频数表组段的上、下限X与Ŷ作图,即可绘出拟合的正态曲线(如图)。
(6)拟合优度检验。必要时可用,见条目 “频数分布的拟合优度”。
例 110名男工人的血红蛋白(g/dl)频数分布见表2第(1)、(2)栏。试拟合一正态曲线。
(1)计算与sc,按式(1)~(2)。
X
0=14.25,i=0.5,x见表2第(3)栏,n=110,
Σfx=-15,∑fx
2=649。

(2)求u值。见第(4)栏。
(3)求z值。按第(4)栏u由表1查得各z值,见第(5)栏。(4)求Ŷ值。按式(4):

将第(5)栏各z值代入,得第(6)栏。
(5)以表2X及Ŷ作图。其中直方图是原资料的频数分布,可见拟合的正态曲线与它颇吻合。
表2 正态曲线拟合的计算


表2数据拟合正态曲线